全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Weighted equilibrium states for factor maps between subshifts

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\pi:X\to Y$ be a factor map, where $(X,\sigma_X)$ and $(Y,\sigma_Y)$ are subshifts over finite alphabets. Assume that $X$ satisfies weak specification. Let $\ba=(a_1,a_2)\in \R^2$ with $a_1>0$ and $a_2\geq 0$. Let $f$ be a continuous function on $X$ with sufficient regularity (H\"{o}lder continuity, for instance). We show that there is a unique shift invariant measure $\mu$ on $X$ that maximizes $\mu(f)+a_1h_\mu(\sigma_X)+ a_2h_{\mu\circ \pi^{-1}}(\sigma_Y)$. In particular, taking $f\equiv 0$ we see that there is a unique invariant measure $\mu$ on $X$ that maximizes the weighted entropy $a_1h_\mu(\sigma_X)+ a_2h_{\mu\circ \pi^{-1}}(\sigma_Y)$. This answers an open question raised by Gatzouras and Peres in \cite{GaPe96}. An extension is also given to high dimensional cases. As an application, we show the uniqueness of invariant measures with full Hausdorff dimension for certain affine invariant sets on the $k$-torus under a diagonal endomorphism.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133