全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Spherical homogeneous spaces of minimal rank

DOI: 10.1016/j.aim.2010.01.014

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $G$ be a complex connected reductive algebraic group and $G/B$ denote the flag variety of $G$. A $G$-homogeneous space $G/H$ is said to be {\it spherical} if $H$ acts on $G/B$ with finitely many orbits. A class of spherical homogeneous spaces containing the tori, the complete homogeneous spaces and the group $G$ (viewed as a $G\times G$-homogeneous space) has particularly nice proterties. Namely, the pair $(G,H)$ is called a {\it spherical pair of minimal rank} if there exists $x$ in $G/B$ such that the orbit $H.x$ of $x$ by $H$ is open in $G/B$ and the stabilizer $H_x$ of $x$ in $H$ contains a maximal torus of $H$. In this article, we study and classify the spherical pairs of minimal rank.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133