全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Minimal Size of Basic Families

Full-Text   Cite this paper   Add to My Lib

Abstract:

A family $\bfam$ of continuous real-valued functions on a space $X$ is said to be {\sl basic} if every $f \in C(X)$ can be represented $f = \sum_{i=1}^n g_i \circ \phi_i$ for some $\phi_i \in \bfam$ and $g_i \in C(\R)$ ($i=1, ..., n$). Define $\basic (X) = \min \{|\bfam| : \bfam$ is a basic family for $X\}$. If $X$ is separable metrizable $X$ then either $X$ is locally compact and finite dimensional, and $\basic (X) < \aleph_0$, or $\basic (X) = \mathfrak{c}$. If $K$ is compact and either $w(K)$ (the minimal size of a basis for $K$) has uncountable cofinality or $K$ has a discrete subset $D$ with $|D|=w(K)$ then either $K$ is finite dimensional, and $\basic (K) = \cof ([w(K)]^{\aleph_0}, \subseteq)$, or $\basic (K) = |C(K)|=w(K)^{\aleph_0}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133