全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Ricci flow and the determinant of the Laplacian on non-compact surfaces

DOI: 10.1080/03605302.2012.721853

Full-Text   Cite this paper   Add to My Lib

Abstract:

On compact surfaces with or without boundary, Osgood, Phillips and Sarnak proved that the maximum of the determinant of the Laplacian within a conformal class of metrics with fixed area occurs at a metric of constant curvature and, for negative Euler characteristic, exhibited a flow from a given metric to a constant curvature metric along which the determinant increases. The aim of this paper is to perform a similar analysis for the determinant of the Laplacian on a non-compact surface whose ends are asymptotic to hyperbolic funnels or cusps. In that context, we show that the Ricci flow converges to a metric of constant curvature and that the determinant increases along this flow.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133