|
Mathematics 2009
Homomorphism and embedding universal structures for restricted classesAbstract: This paper unifies problems and results related to (embedding) universal and homomorphism universal structures. On the one side we give a new combinatorial proof of the existence of universal objects for homomorphism defined classes of structures (thus reproving a result of Cherlin, Shelah and Shi) and on the other side this leads to the new proof of the existence of dual objects (established by Ne\v{s}et\v{r}il and Tardif). Our explicite approach has further applications to special structures such as variants of the rational Urysohn space. We also solve a related extremal problem which shows the optimality (of the used lifted arities) of our construction (and a related problem of A. Atserias).
|