全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Uniqueness of Shalika functionals (the Archimedean case)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F be either R or C. Let $(\pi,V)$ be an irreducible admissible smooth \Fre representation of GL(2n,F). A Shalika functional $\phi:V \to \C$ is a continuous linear functional such that for any $g\in GL_n(F), A \in \Mat_{n \times n}(F)$ and $v\in V$ we have $$ \phi[\pi g & A 0 & g)v] = \exp(2\pi i \re(\tr (g^{-1}A))) \phi(v).$$ In this paper we prove that the space of Shalika functionals on V is at most one dimensional. For non-Archimedean F (of characteristic zero) this theorem was proven in [JR].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133