全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Quadrilateral-octagon coordinates for almost normal surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

Normal and almost normal surfaces are essential tools for algorithmic 3-manifold topology, but to use them requires exponentially slow enumeration algorithms in a high-dimensional vector space. The quadrilateral coordinates of Tollefson alleviate this problem considerably for normal surfaces, by reducing the dimension of this vector space from 7n to 3n (where n is the complexity of the underlying triangulation). Here we develop an analogous theory for octagonal almost normal surfaces, using quadrilateral and octagon coordinates to reduce this dimension from 10n to 6n. As an application, we show that quadrilateral-octagon coordinates can be used exclusively in the streamlined 3-sphere recognition algorithm of Jaco, Rubinstein and Thompson, reducing experimental running times by factors of thousands. We also introduce joint coordinates, a system with only 3n dimensions for octagonal almost normal surfaces that has appealing geometric properties.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133