全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Uniqueness of nontrivially complete monotonicity for a class of functions involving polygamma functions

DOI: 10.1080/10652461003748112

Full-Text   Cite this paper   Add to My Lib

Abstract:

For $m,n\in\mathbb{N}$, let $f_{m,n}(x)=\bigr[\psi^{(m)}(x)\bigl]^2+\psi^{(n)}(x)$ on $(0,\infty)$. In the present paper, we prove using two methods that, among all $f_{m,n}(x)$ for $m,n\in\mathbb{N}$, only $f_{1,2}(x)$ is nontrivially completely monotonic on $(0,\infty)$. Accurately, the functions $f_{1,2}(x)$ and $f_{m,2n-1}(x)$ are completely monotonic on $(0,\infty)$, but the functions $f_{m,2n}(x)$ for $(m,n)\ne(1,1)$ are not monotonic and does not keep the same sign on $(0,\infty)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133