全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Well-posedness and regularity of generalized Navier-Stokes equations in some Critical $Q-$spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the well-posedness and regularity of the generalized Navier-Stokes equations with initial data in a new critical space $Q_{\alpha;\infty}^{\beta,-1}(\mathbb{R}^{n})=\nabla\cdot(Q_{\alpha}^{\beta}(\mathbb{R}^{n}))^{n}, \beta\in({1/2},1)$ which is larger than some known critical homogeneous Besov spaces. Here $Q_{\alpha}^{\beta}(\mathbb{R}^{n})$ is a space defined as the set of all measurable functions with $$\sup(l(I))^{2(\alpha+\beta-1)-n}\int_{I}\int_{I}\frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2(\alpha-\beta+1)}}dxdy<\infty$$ where the supremum is taken over all cubes $I$ with the edge length $l(I)$ and the edges parallel to the coordinate axes in $\mathbb{R}^{n}.$ In order to study the well-posedness and regularity, we give a Carleson measure characterization of $Q_{\alpha}^{\beta}(\mathbb{R}^{n})$ by investigating a new type of tent spaces and an atomic decomposition of the predual for $Q_{\alpha}^{\beta}(\mathbb{R}^{n}).$ In addition, our regularity results apply to the incompressible Navier-Stokes equations with initial data in $Q_{\alpha;\infty}^{1,-1}(\mathbb{R}^{n}).$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133