全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

High-dimensional Gaussian model selection on a Gaussian design

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the problem of estimating the conditional mean of a real Gaussian variable $\nolinebreak Y=\sum_{i=1}^p\nolinebreak\theta_iX_i+\nolinebreak \epsilon$ where the vector of the covariates $(X_i)_{1\leq i\leq p}$ follows a joint Gaussian distribution. This issue often occurs when one aims at estimating the graph or the distribution of a Gaussian graphical model. We introduce a general model selection procedure which is based on the minimization of a penalized least-squares type criterion. It handles a variety of problems such as ordered and complete variable selection, allows to incorporate some prior knowledge on the model and applies when the number of covariates $p$ is larger than the number of observations $n$. Moreover, it is shown to achieve a non-asymptotic oracle inequality independently of the correlation structure of the covariates. We also exhibit various minimax rates of estimation in the considered framework and hence derive adaptiveness properties of our procedure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133