全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Multiple solutions for the $p-$laplace operator with critical growth

DOI: 10.1016/j.na.2009.06.036

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation $-\Delta_p u = |u|^{p^*-2}u + \lambda f(x,u)$ in a smooth bounded domain $\Omega$ of $\R^N$ with homogeneous Dirichlet boundary conditions on $\partial\Omega$, where $p^*=Np/(N-p)$ is the critical Sobolev exponent and $\Delta_p u =div(|\nabla u|^{p-2}\nabla u)$ is the $p-$laplacian. The proof is based on variational arguments and the classical concentrated compactness method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133