全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Global Smooth Effects and Well-Posedness for the Derivative Nonlinear Schr?dinger Equation with Small Rough Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

\rm We obtain the global smooth effects for the solutions of the linear Schr\"odinger equation in anisotropic Lebesgue spaces. Applying these estimates, we study the Cauchy problem for the generalized elliptical and non-elliptical derivative nonlinear Schr\"odinger equations (DNLS) and get the global well posedness of solutions with small data in modulation spaces $M^{3/2}_{2,1}(\mathbb{R}^n)$. Noticing that $H^{\tilde{s}} \subset M^s_{2,1}$ $(\tilde{s}-s>n/2)$ is an optimal inclusion, we have shown the global well posedness of DNLS with a class of very rough data.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133