全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

The Mobius function is strongly orthogonal to nilsequences

DOI: 10.1103/PhysRevA.79.035801

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that the Mobius function mu(n) is strongly asymptotically orthogonal to any polynomial nilsequence n -> F(g(n)L). Here, G is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup L (so G/L is a nilmanifold), g : Z -> G is a polynomial sequence and F: G/L -> R is a Lipschitz function. More precisely, we show that the inner product of mu(n) with F(g(n)L) over {1,...,N} is bounded by 1/log^A N, for all A > 0. In particular, this implies the Mobius and Nilsequence conjecture MN(s) from our earlier paper "Linear equations in primes" for every positive integer s. This is one of two major ingredients in our programme, outlined in that paper, to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection \psi_1,...,\psi_t : Z^d -> Z of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper on the distribution of polynomial orbits on nilmanifolds. We give some applications of our main theorem. We show, for example, that the Mobius function is uncorrelated with any bracket polynomial. We also obtain a result about the distribution of nilsequences n -> a^nxL as n ranges only over the primes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133