全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Annular embeddings of permutations for arbitrary genus

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the symmetric group on a set of size 2n, let P_{2n} denote the conjugacy class of involutions with no fixed points (equivalently, we refer to these as ``pairings'', since each disjoint cycle has length 2). Harer and Zagier explicitly determined the distribution of the number of disjoint cycles in the product of a fixed cycle of length 2n and the elements of P_{2n}. Their famous result has been reproved many times, primarily because it can be interpreted as the genus distribution for 2-cell embeddings in an orientable surface,of a graph with a single vertex attached to n loops. In this paper we give a new formula for the cycle distribution when a fixed permutation with two cycles (say the lengths are p,q, where p+q=2n) is multiplied by the elements of P_{2n}. It can be interpreted as the genus distribution for 2-cell embeddings in an orientable surface, of a graph with two vertices, of degrees p and q. In terms of these graphs, the formula involves a parameter that allows us to specify, separately, the number of edges between the two vertices and the number of loops at each of the vertices. The proof is combinatorial, and uses a new algorithm that we introduce to create all rooted forests containing a given rooted forest.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133