全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Faithful representations of minimal dimension of current Heisenberg Lie algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given a Lie algebra $\mathfrak{g}$ over a field of characteristic zero $k$, let $\mu(\mathfrak{g})=\min\{\dim \pi: \pi\text{is a faithful representation of}\mathfrak{g}\}$. Let $\mathfrak{h}_{m}$ be the Heisenberg Lie algebra of dimension $2m+1$ over $k$ and let $k[t]$ be the polynomial algebra in one variable. Given $m\in\mathbb{N}$ and $p\in k[t]$, let $\mathfrak{h}_{m,p}=\mathfrak{h}_m\otimes k[t]/(p)$ be the current Lie algebra associated to $\mathfrak{h}_m$ and $k[t]/(p)$, where $(p)$ is the principal ideal in $k[t]$ generated by $p$. In this paper we prove that $ mu(\mathfrak{h}_{m,p}) = m \deg p + \left \lceil 2\sqrt{\deg p} \right\rceil$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133