全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

DOI: 10.1155/2012/436203

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs), are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy. 1. Introduction Primary disorders of tendons are common and account for a high proportion of referrals to rheumatologists and orthopaedic surgeons [1]. The most commonly involved tendons are the rotator cuff (particularly supraspinatus) in the shoulder, the forearm extensor (tennis elbow) and flexor tendons (golfers elbow) in the forearm, the patella tendon in the knee, the Achilles tendon in the lower leg, and the tibialis posterior tendon in the ankle and foot. The intrinsic pathogenetic mechanisms underlying the development of tendinopathies are largely unknown however proinflammatory cytokines, apoptosis, and mechanical stress have recently been functionally implicated in several model systems [2, 3]. Increasing evidence is emerging that repetitive tissue trauma and its associated damage in stromal tissues are recognized at the cell level via receptor-mediated detection of intracellular proteins released by necrotic cells [4]. The term “alarmin” is proposed to categorise such endogenous molecules that function to mobilise and activate immune cells after interaction with their specific receptors during host defence and tissue repair [4]. Heat shock proteins (HSPs), a type of stress molecules involved in protein folding, are implicated as important tissue alarmins [5]. HSP activation can directly affect both innate and adaptive immunity, although controversial studies and opinions exist in the field [6–8]. The innate immune responses induced by HSPs include cytokine and chemokine

References

[1]  L. V. Gulotta, S. Chaudhury, and D. Wiznia, “Stem cells for augmenting tendon repair,” Stem Cells International, vol. 2012, Article ID 291431, 7 pages, 2012.
[2]  D. A. Hart, C. B. Frank, A. Kjdd, T. Ivie, P. Sciore, and C. Reno, “Neurogenic, mast cell and gender variables in tendon biology: potential role in chronic tendinopathy,” in Tendon Injuries, pp. 40–48, Springer, London, UK, 2005.
[3]  S. M. Perry, S. E. McIlhenny, M. C. Hoffman, and L. J. Soslowsky, “Inflammatory and angiogenic mRNA levels are altered in a supraspinatus tendon overuse animal model,” Journal of Shoulder and Elbow Surgery, vol. 14, no. 1, supplement, pp. 79S–83S, 2005.
[4]  J. Yoshioka, W. A. Chutkow, S. Lee, J. B. Kim, J. Yan, and R. Tian, “Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury,” Journal of Clinical Investigation, vol. 122, no. 1, pp. 267–279, 2012.
[5]  J. M. Bruey, C. Ducasse, P. Bonniaud et al., “Hsp27 negatively regulates cell death by interacting with cytochrome c,” Nature Cell Biology, vol. 2, no. 9, pp. 645–652, 2000.
[6]  P. Srivastava, “Roles of heat-shock proteins in innate and adaptive immunity,” Nature Reviews Immunology, vol. 2, no. 3, pp. 185–194, 2002.
[7]  F. J. Quintana and I. R. Cohen, “Heat shock proteins as endogenous adjuvants in sterile and septic inflammation,” Journal of Immunology, vol. 175, no. 5, pp. 2777–2782, 2005.
[8]  C. V. Nicchitta, “Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity,” Nature Reviews Immunology, vol. 3, no. 5, pp. 427–432, 2003.
[9]  B. Gao and M. F. Tsan, “Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 174–179, 2003.
[10]  M. Locke, “The cellular stress response to exercise: role of stress proteins,” Exercise and Sport Sciences Reviews, vol. 25, pp. 105–136, 1997.
[11]  M. J??ttel?, “Heat shock proteins as cellular lifeguards,” Annals of Medicine, vol. 31, no. 4, pp. 261–271, 1999.
[12]  S. Basu, R. J. Binder, R. Suto, K. M. Anderson, and P. K. Srivastava, “Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway,” International Immunology, vol. 12, no. 11, pp. 1539–1546, 2000.
[13]  A. Barreto, J. M. Gonzalez, E. Kabingu, A. Asea, and S. Fiorentino, “Stress-induced release of HSC70 from human tumors,” Cellular Immunology, vol. 222, no. 2, pp. 97–104, 2003.
[14]  B. V. Edington, S. A. Whelan, and L. E. Hightower, “Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction,” Journal of Cellular Physiology, vol. 139, no. 2, pp. 219–228, 1989.
[15]  A. G. Pockley, J. Bulmer, B. M. Hanks, and B. H. Wright, “Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals,” Cell Stress and Chaperones, vol. 4, no. 1, pp. 29–35, 1999.
[16]  I. M. Rea, S. McNerlan, and A. G. Pockley, “Serum heat shock protein and anti-heat shock protein antibody levels in aging,” Experimental Gerontology, vol. 36, no. 2, pp. 341–352, 2001.
[17]  A. G. Pockley, R. Wu, C. Lemne, R. Kiessling, U. De Faire, and J. Frosteg?rd, “Circulating heat shock protein 60 is associated with early cardiovascular disease,” Hypertension, vol. 36, no. 2, pp. 303–307, 2000.
[18]  M. Mayr, S. Kiechl, J. Willeit, G. Wick, and Q. Xu, “Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis,” Circulation, vol. 102, no. 8, pp. 833–839, 2000.
[19]  Q. Q. Huang, R. Sobkoviak, A. R. Jockheck-Clark et al., “Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling,” Journal of Immunology, vol. 182, no. 8, pp. 4965–4973, 2009.
[20]  L. E. Hightower, “Heat shock, stress proteins, chaperones, and proteotoxicity,” Cell, vol. 66, no. 2, pp. 191–197, 1991.
[21]  M. J. Schlesinger, “Heat shock proteins,” Journal of Biological Chemistry, vol. 265, no. 21, pp. 12111–12114, 1990.
[22]  A. L. Fink, “Chaperone-mediated protein folding,” Physiological Reviews, vol. 79, no. 2, pp. 425–449, 1999.
[23]  S. Lindquist and E. A. Craig, “The heat-shock proteins,” Annual Review of Genetics, vol. 22, pp. 631–677, 1988.
[24]  P. Antal-Szalmas, “Evaluation of CD14 in host defence,” European Journal of Clinical Investigation, vol. 30, no. 2, pp. 167–179, 2000.
[25]  W. Chen, U. Syldath, K. Bellmann, V. Burkart, and H. Kolb, “Human 60-kDa heat-shock protein: a danger signal to the innate immune system,” Journal of Immunology, vol. 162, no. 6, pp. 3212–3219, 1999.
[26]  S. B. Flohé, J. Brüggemann, S. Lendemans et al., “Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype,” Journal of Immunology, vol. 170, no. 5, pp. 2340–2348, 2003.
[27]  L. E. Hightower and P. T. Guidon Jr., “Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins,” Journal of Cellular Physiology, vol. 138, no. 2, pp. 257–266, 1989.
[28]  Y. Xu and G. A. C. Murrell, “The basic science of tendinopathy,” Clinical Orthopaedics and Related Research, vol. 466, no. 7, pp. 1528–1538, 2008.
[29]  J. Yuan, G. A. C. Murrell, A. Q. Wei, and M. X. Wang, “Apoptosis in rotator cuff tendonopathy,” Journal of Orthopaedic Research, vol. 20, no. 6, pp. 1372–1379, 2002.
[30]  M. F. Tsan and B. Gao, “Heat shock proteins and immune system,” Journal of Leukocyte Biology, vol. 85, no. 6, pp. 905–910, 2009.
[31]  P. K. Srivastava, H. Udono, N. E. Blachere, and Z. Li, “Heat shock proteins transfer peptides during antigen processing and CTL priming,” Immunogenetics, vol. 39, no. 2, pp. 93–98, 1994.
[32]  Y. M. Snyder, L. Guthrie, G. F. Evans, and S. H. Zuckerman, “Transcriptional inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages,” Journal of Leukocyte Biology, vol. 51, no. 2, pp. 181–187, 1992.
[33]  M. J. Kluger, K. Rudolph, D. Soszynski et al., “Effect of heat stress on LPS-induced fever and tumor necrosis factor,” American Journal of Physiology, vol. 273, no. 3, pp. R858–R863, 1997.
[34]  W. V. Eden, J. E. R. Tholet, R. V. D. Zee et al., “Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis,” Nature, vol. 331, no. 6152, pp. 171–173, 1988.
[35]  S. R. Brand, D. P. McIntosh, and R. M. Berstein, “Antibody to a 63kDa protein in ankylosing spondylitis,” British Journal of Rheumatology, vol. 28, supplement, article 5, 1989.
[36]  S. Minota, S. Koyasu, I. Yahara, and J. Winfield, “Autoantibodies to the heat-stock protein hsp90 in systemic lupus erythematosus,” Journal of Clinical Investigation, vol. 81, no. 1, pp. 106–109, 1988.
[37]  S. Minota, B. Cameron, W. J. Welch, and J. B. Winfield, “Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus,” Journal of Experimental Medicine, vol. 168, no. 4, pp. 1475–1480, 1988.
[38]  E. H. Kang, D. J. Kim, E. Y. Lee, Y. J. Lee, E. B. Lee, and Y. W. Song, “Downregulation of heat shock protein 70 protects rheumatoid arthritis fibroblast-like synoviocytes from nitric oxide-induced apoptosis,” Arthritis Research & Therapy, vol. 11, no. 4, article R130, 2009.
[39]  M. M. Newkirk, S. Mitchell, M. Procino, Z. Li, M. Cosio, and W. Mazur, “Chronic smoke exposure induces rheumatoid factor and anti-heat shock protein 70 autoantibodies in susceptible mice and humans with lung disease,” European Journal of Immunology, vol. 42, no. 4, pp. 1051–1061, 2012.
[40]  A. Hashiramoto, M. Murata, T. Kawazoe et al., “Heat shock protein 90 maintains the tumour-like character of rheumatoid synovial cells by stabilizing integrin-linked kinase, extracellular signal-regulated kinase and protein kinase B,” Rheumatology, vol. 50, no. 5, Article ID keq385, pp. 852–861, 2011.
[41]  G. L. Puga Yung, T. D. Le, S. Roord, B. Prakken, and S. Albani, “Heat shock proteins (HSP) for immunotherapy of rheumatoid arthritis (RA),” Inflammation Research, vol. 52, no. 11, pp. 443–451, 2003.
[42]  G. A. C. Murrell, C. Szabo, J. A. Hannafin et al., “Modulation of tendon healing by nitric oxide,” Inflammation Research, vol. 46, no. 1, pp. 19–27, 1997.
[43]  A. Scott and M. C. Ashe, “Common tendinopathies in the upper and lower extremities,” Current Sports Medicine Reports, vol. 5, no. 5, pp. 233–241, 2006.
[44]  B. M. Andres and G. A. Murrell, “Molecular and clinical developments in tendinopathy: editorial comment,” Clinical Orthopaedics and Related Research, vol. 466, no. 7, pp. 1519–1520, 2008.
[45]  G. P. Riley, H. Harrall, C. R. Constant, M. D. Chard, T. E. Cawston, and B. L. Hazleman, “Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis,” Annals of the Rheumatic Diseases, vol. 53, no. 6, pp. 359–366, 1994.
[46]  T. Hashimoto, K. Nobuhara, and T. Hamada, “Pathologic evidence of degeneration as a primary cause of rotator cuff tear,” Clinical Orthopaedics and Related Research, no. 415, pp. 111–120, 2003.
[47]  D. Kader, A. Saxena, T. Movin, and N. Maffulli, “Achilles tendinopathy: some aspects of basic science and clinical management,” British Journal of Sports Medicine, vol. 36, no. 4, pp. 239–249, 2002.
[48]  L. ?hberg, R. Lorentzon, and H. Alfredson, “Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 9, no. 4, pp. 233–238, 2001.
[49]  K. Gisslén and H. Alfredson, “Neovascularisation and pain in jumper's knee: a prospective clinical and sonographic study in elite junior volleyball players,” British Journal of Sports Medicine, vol. 39, no. 7, pp. 423–427, 2005.
[50]  P. Sharma and N. Maffulli, “Tendon injury and tendinopathy: healing and repair,” Journal of Bone and Joint Surgery Series A, vol. 87, no. 1, pp. 187–202, 2005.
[51]  N. L. Millar, A. Q. Wei, T. J. Molloy, F. Bonar, and G. A. C. Murrell, “Cytokines and apoptosis in supraspinatus tendinopathy,” Journal of Bone and Joint Surgery Series B, vol. 91, no. 3, pp. 417–424, 2009.
[52]  K. Lundgreen, O. B. Lian, L. Engebretsen, and A. Scott, “Tenocyte apoptosis in the torn rotator cuff: a primary or secondary pathological event?” British Journal of Sports Medicine, vol. 45, no. 13, pp. 1035–1039, 2011.
[53]  N. L. Millar, J. H. Reilly, S. C. Kerr, A. L. Campbell, K. J. Little, and W. J. Leach, “Hypoxia: a critical regulator of early human tendinopathy,” Annals of the rheumatic diseases, vol. 71, no. 2, pp. 302–310, 2012.
[54]  H. Pan and J. Halper, “Regulation of heat shock protein 47 and type I procollagen expression in avian tendon cells,” Cell and Tissue Research, vol. 311, no. 3, pp. 373–382, 2003.
[55]  M. Jagodzinski, S. Hankemeier, M. van Griensven, U. Bosch, C. Krettek, and J. Zeichen, “Influence of cyclic mechanical strain and heat of human tendon fibroblasts on HSP-72,” European Journal of Applied Physiology, vol. 96, no. 3, pp. 249–256, 2006.
[56]  T. Barkhausen, M. Van Griensven, J. Zeichen, and U. Bosch, “Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns,” Experimental and Toxicologic Pathology, vol. 55, no. 2-3, pp. 153–158, 2003.
[57]  T. J. Molloy, M. W. Kemp, Y. Wang, and G. A. C. Murrell, “Microarray analysis of the tendinopathic rat supraspinatus tendon: glutamate signaling and its potential role in tendon degeneration,” Journal of Applied Physiology, vol. 101, no. 6, pp. 1702–1709, 2006.
[58]  N. L. Millar, A. Q. Wei, T. J. Molloy, F. Bonar, and G. A. C. Murrell, “Heat shock protein and apoptosis in supraspinatus tendinopathy,” Clinical Orthopaedics and Related Research, vol. 466, no. 7, pp. 1569–1576, 2008.
[59]  J. L. Martin-Ventura, V. Nicolas, X. Houard et al., “Biological significance of decreased HSP27 in human atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 6, pp. 1337–1343, 2006.
[60]  C. Leeuwenburgh, J. Hollander, S. Leichtweis, M. Griffiths, M. Gore, and L. L. Ji, “Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific,” American Journal of Physiology, vol. 272, no. 1, pp. R363–R369, 1997.
[61]  D. D. Mosser, A. W. Caron, L. Bourget, C. Denis-Larose, and B. Massie, “Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis,” Molecular and Cellular Biology, vol. 17, no. 9, pp. 5317–5327, 1997.
[62]  M. Jaattela, D. Wissing, P. A. Bauer, and G. C. Li, “Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity,” EMBO Journal, vol. 11, no. 10, pp. 3507–3512, 1992.
[63]  K. Bellmann, M. J??ttel?, D. Wissing, V. Burkart, and H. Kolb, “Heat shock protein hsp70 overexpression confers resistance against nitric oxide,” FEBS Letters, vol. 391, no. 1-2, pp. 185–188, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133