全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

On the degree of regularity of generalized van der Waerden triples

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $1 \leq a \leq b$ be integers. A triple of the form $(x,ax+d,bx+2d)$, where $x,d$ are positive integers is called an {\em (a,b)-triple}. The {\em degree of regularity} of the family of all $(a,b)$-triples, denoted dor($a,b)$, is the maximum integer $r$ such that every $r$-coloring of $\mathbb{N}$ admits a monochromatic $(a,b)$-triple. We settle, in the affirmative, the conjecture that dor$(a,b) < \infty$ for all $(a,b) \neq (1,1)$. We also disprove the conjecture that dor($a,b) \in \{1,2,\infty\}$ for all $(a,b)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133