全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

On packing spheres into containers (about Kepler's finite sphere packing problem)

Full-Text   Cite this paper   Add to My Lib

Abstract:

In an Euclidean $d$-space, the container problem asks to pack $n$ equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and $d\geq 2$ we show that solutions to the container problem can not have a ``simple structure'' for large $n$. By this we in particular find that there exist arbitrary small $r>0$, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius $r$, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing ``will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container''.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133