全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Localization lengths for Schroedinger operators on Z^2 with decaying random potentials

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a class of Schr\"odinger operators on $\Z^2$ with a random potential decaying as $|x|^{-\dex}$, $0<\dex\leq\frac12$, in the limit of small disorder strength $\lambda$. For the critical exponent $\dex=\frac12$, we prove that the localization length of eigenfunctions is bounded below by $2^{\lambda^{-\frac14+\eta}}$, while for $0<\dex<\frac12$, the lower bound is $\lambda^{-\frac{2-\eta}{1-2\dex}}$, for any $\eta>0$. These estimates "interpolate" between the lower bound $\lambda^{-2+\eta}$ due to recent work of Schlag-Shubin-Wolff for $\dex=0$, and pure a.c. spectrum for $\dex>\frac12$ demonstrated in recent work of Bourgain.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133