全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2004 

Aizenman's Theorem for Orthogonal Polynomials on the Unit Circle

Full-Text   Cite this paper   Add to My Lib

Abstract:

For suitable classes of random Verblunsky coefficients, including independent, identically distributed, rotationally invariant ones, we prove that if \[ \mathbb{E} \biggl(\int\frac{d\theta}{2\pi} \biggl|\biggl(\frac{\mathcal{C} + e^{i\theta}}{\mathcal{C} -e^{i\theta}} \biggr)_{k\ell}\biggr|^p \biggr) \leq C_1 e^{-\kappa_1 |k-\ell|} \] for some $\kappa_1 >0$ and $p<1$, then for suitable $C_2$ and $\kappa_2 >0$, \[ \mathbb{E} \bigl(\sup_n |(\mathcal{C}^n)_{k\ell}|\bigr) \leq C_2 e^{-\kappa_2 |k-\ell|} \] Here $\mathcal{C}$ is the CMV matrix.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133