全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Complexes of graph homomorphisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

$Hom(G,H)$ is a polyhedral complex defined for any two undirected graphs $G$ and $H$. This construction was introduced by Lov\'asz to give lower bounds for chromatic numbers of graphs. In this paper we initiate the study of the topological properties of this class of complexes. We prove that $Hom(K_m,K_n)$ is homotopy equivalent to a wedge of $(n-m)$-dimensional spheres, and provide an enumeration formula for the number of the spheres. As a corollary we prove that if for some graph $G$, and integers $m\geq 2$ and $k\geq -1$, we have $\varpi_1^k(\thom(K_m,G))\neq 0$, then $\chi(G)\geq k+m$; here $Z_2$-action is induced by the swapping of two vertices in $K_m$, and $\varpi_1$ is the first Stiefel-Whitney class corresponding to this action. Furthermore, we prove that a fold in the first argument of $Hom(G,H)$ induces a homotopy equivalence. It then follows that $Hom(F,K_n)$ is homotopy equivalent to a direct product of $(n-2)$-dimensional spheres, while $Hom(\bar{F},K_n)$ is homotopy equivalent to a wedge of spheres, where $F$ is an arbitrary forest and $\bar{F}$ is its complement.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133