全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Semi-invertible extensions and asymptotic homomorphisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the semigroup $Ext(A,B)$ of extensions of a separable C*-algebra $A$ by a stable C*-algebra $B$ modulo unitary equivalence and modulo asymptotically split extensions. This semigroup contains the group $Ext^{-1/2}(A,B)$ of invertible elements (i.e. of semi-invertible extensions). We show that the functor $Ext^{1/2}(A,B)$ is homotopy invariant and that it coincides with the functor of homotopy classes of asymptotic homomorphisms from $C(\mathbb T)\otimes A$ to $M(B)$ that map $SA\subseteq C(\mathbb T)\otimes A$ into $B$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133