全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

The primitive solutions to x^3+y^9=z^2

DOI: 10.1016/j.jnt.2004.11.008

Full-Text   Cite this paper   Add to My Lib

Abstract:

We determine the rational integers x,y,z such that x^3+y^9=z^2 and gcd(x,y,z)=1. First we determine a finite set of curves of genus 10 such that any primitive solution to x^3+y^9=z^2 corresponds to a rational point on one of those curves. We observe that each of these genus 10 curves covers an elliptic curve over some extension of Q. We use this cover to apply a Chabauty-like method to an embedding of the curve in the Weil restriction of the elliptic curve. This enables us to find all rational points and therefore deduce the primitive solutions to the original equation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133