全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Vertices of Gelfand-Tsetlin Polytopes

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns arising in the representation theory $\mathfrak{gl}_n \C$ and algebraic combinatorics. We present a combinatorial characterization of the vertices and a method to calculate the dimension of the lowest-dimensional face containing a given Gelfand-Tsetlin pattern. As an application, we disprove a conjecture of Berenstein and Kirillov about the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can construct for each $n\geq5$ a counterexample, with arbitrarily increasing denominators as $n$ grows, of a non-integral vertex. This is the first infinite family of non-integral polyhedra for which the Ehrhart counting function is still a polynomial. We also derive a bound on the denominators for the non-integral vertices when $n$ is fixed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133