全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

Asymmetric binary covering codes

Full-Text   Cite this paper   Add to My Lib

Abstract:

An asymmetric binary covering code of length n and radius R is a subset C of the n-cube Q_n such that every vector x in Q_n can be obtained from some vector c in C by changing at most R 1's of c to 0's, where R is as small as possible. K^+(n,R) is defined as the smallest size of such a code. We show K^+(n,R) is of order 2^n/n^R for constant R, using an asymmetric sphere-covering bound and probabilistic methods. We show K^+(n,n-R')=R'+1 for constant coradius R' iff n>=R'(R'+1)/2. These two results are extended to near-constant R and R', respectively. Various bounds on K^+ are given in terms of the total number of 0's or 1's in a minimal code. The dimension of a minimal asymmetric linear binary code ([n,R]^+ code) is determined to be min(0,n-R). We conclude by discussing open problems and techniques to compute explicit values for K^+, giving a table of best known bounds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133