全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2003 

The comparsion principle for viscosity solutions of fully nonlinear subelliptic equations in Carnot groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

For any Carnot group $\bf G$ and a bounded domain $\Omega\subset \bf G$, we prove that viscosity solutions in $C(\bar\Om)$ of the fully nonlinear subelliptic equation $F(u,\nabla_h u, \nabla^2_h u)=0$ are unique when $F\in C(R\times R^m\times {\Cal S}(m))$ satisfies (i) $F$ is degenerate subelliptic and decreasing in $u$ or (ii) $F$ is uniformly subelliptic and nonincreasing in $u$. This extends Jensen's uniqueness theorem from the Euclidean space to the sub-Riemannian setting of the Carnot group.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133