全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

Complete surfaces with negative extrinsic curvature

Full-Text   Cite this paper   Add to My Lib

Abstract:

N. V. Efimov \cite{Ef1} proved that there is no complete, smooth surface in $\R^3$ with uniformly negative curvature. We extend this to isometric immersions in a 3-manifold with pinched curvature: if $M^3$ has sectional curvature between two constants $K_2$ and $K_3$, then there exists $K_1 < \min(K_2, 0)$ such that $M$ contains no smooth, complete immersed surface with curvature below $K_1$. Optimal values of $K_1$ are determined. This results rests on a phenomenon of propagations for degenerations of solutions of hyperbolic Monge-Amp{\`e}re equations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133