全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1999 

Percolation in the Hyperbolic Plane

DOI: 10.1090/S0894-0347-00-00362-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

This is a study of percolation in the hyperbolic plane and on regular tilings in the hyperbolic plane. The processes discussed include Bernoulli site and bond percolation on planar hyperbolic graphs, invariant dependent percolations on such graphs, and Poisson-Voronoi-Bernoulli percolation. We prove the existence of three distinct nonempty phases for the Bernoulli processes. In the first phase, $p\in(0, p_c]$, there are no unbounded clusters, but there is a unique infinite cluster for the dual process. In the second phase, $p\in(p_c,p_u)$, there are infinitely many unbounded clusters for the process and for the dual process. In the third phase, $p\in [p_u,1)$, there is a unique unbounded cluster, and all the clusters of the dual process are bounded. We also study the dependence of $p_c$ in the Poisson-Voronoi-Bernoulli percolation process on the intensity of the underlying Poisson process.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133