全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Larson-Sweedler Theorem and the Role of Grouplike Elements in Weak Hopf Algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

We extend the Larson-Sweedler theorem to weak Hopf algebras by proving that a finite dimensional weak bialgebra is a weak Hopf algebra iff it possesses a non-degenerate left integral. We show that the category of modules over a weak Hopf algebra is autonomous monoidal with semisimple unit and invertible modules. We also reveal the connection of invertible modules to left and right grouplike elements in the dual weak Hopf algebra. Defining distinguished left and right grouplike elements we derive the Radford formula for the fourth power of the antipode in a weak Hopf algebra and prove that the order of the antipode is finite up to an inner automorphism by a grouplike element in the trivial subalgebra A^T of the underlying weak Hopf algebra A.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133