全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Operator Figa-Talamanca-Herz algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let G be a locally compact group. We use the canonical operator space structure on the spaces $L^p(G)$ for $p \in [1,\infty]$ introduced by G. Pisier to define operator space analogues $OA_p(G)$ of the classical Figa-Talamanca-Herz algebras $A_p(G)$. If $p \in (1,\infty)$ is arbitrary, then $A_p(G) \subset OA_p(G)$ such that the inclusion is a contraction; if p = 2, then $OA_2(G) \cong A(G)$ as Banachspaces spaces, but not necessarily as operator spaces. We show that $OA_p(G)$ is a completely contractive Banach algebra for each $p \in (1,\infty)$, and that $OA_q(G) \subset OA_p(G)$ completely contractively for amenable $G$ if $1 < p \leq q \leq 2$ or $2 \leq q \leq p < \infty$. Finally, we characterize the amenability of G through the existence of a bounded approximate identity in $OA_p(G)$ for one (or equivalently for all) $p \in (1,\infty)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133