全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Vanishing Cycles and the Inverse Problem of Potential Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove the infinitesimal uniqueness theorem for the Newton potential of non simply connected bodies using the singularity theory approach. We consider the Newtonian potentials of the domains in ${\bf R}^n$ boundaries of which are the vanishing cycles on the level hypersurface of a holomorphic function with isolated singularity at 0. These domains don't have to be convex, connected or simply connected, we also don't have any dimensional restrictions. We consider multiparametric families of such domains in the miniversal deformation of the original function. We show that in the parameter space any point has a neighborhood s.t. potentials of the domains corresponding to parameters from this neighborhood are all different as functions of the external parameter y.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133