全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider polynomials that are orthogonal on $[-1,1]$ with respect to a modified Jacobi weight $(1-x)^\alpha (1+x)^\beta h(x)$, with $\alpha,\beta>-1$ and $h$ real analytic and stricly positive on $[-1,1]$. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval $[-1,1]$, for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants. For the asymptotic analysis we use the steepest descent technique for Riemann--Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the Szeg\H{o} function associated with the weight and for the local analysis around the endpoints $\pm 1$ we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133