|
Mathematics 2001
Topological semigroups and universal spaces related to extension dimensionAbstract: It is proved that there is no structure of left (right) cancelative semigroup on $[L]$-dimensional universal space for the class of separable compact spaces of extensional dimension $\le [L]$. Besides, we note that the homeomorphism group of $[L]$-dimensional space whose nonempty open sets are universal for the class of separable compact spaces of extensional dimension $\le [L]$ is totally disconnected.
|