全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Numerical Study of Quantum Resonances in Chaotic Scattering

DOI: 10.1006/jcph.2001.6986

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents numerical evidence that for quantum systems with chaotic classical dynamics, the number of scattering resonances near an energy $E$ scales like $\hbar^{-\frac{D(K_E)+1}{2}}$ as $\hbar\to{0}$. Here, $K_E$ denotes the subset of the classical energy surface $\{H=E\}$ which stays bounded for all time under the flow generated by the Hamiltonian $H$ and $D(K_E)$ denotes its fractal dimension. Since the number of bound states in a quantum system with $n$ degrees of freedom scales like $\hbar^{-n}$, this suggests that the quantity $\frac{D(K_E)+1}{2}$ represents the effective number of degrees of freedom in scattering problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133