全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2002 

A Hilbert-Mumford criterion for SL_2-actions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let the special linear group $G := SL_{2}$ act regularly on a $Q$-factorial variety $X$. Consider a maximal torus $T \subset G$ and its normalizer $N \subset G$. We prove: If $U \subset X$ is a maximal open $N$-invariant subset admitting a good quotient $U \to U // N$ with a divisorial quotient space, then the intersection $W(U)$ of all translates $g \dot U$ is open in $X$ and admits a good quotient $W(U) \to W(U) // G$ with a divisorial quotient space. Conversely, we obtain that every maximal open $G$-invariant subset $W \subset X$ admitting a good quotient $W \to W // G$ with a divisorial quotient space is of the form $W = W(U)$ for some maximal open $N$-invariant $U$ as above.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133