全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2002 

Lusternik - Schnirelman theory and dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we study a new topological invariant $\Cat(X,\xi)$, where $X$ is a finite polyhedron and $\xi\in H^1(X;\R)$ is a real cohomology class. $\Cat(X,\xi)$ is defined using open covers of $X$ with certain geometric properties; it is a generalization of the classical Lusternik -- Schnirelman category. We show that $\Cat(X,\xi)$ depends only on the homotopy type of $(X,\xi)$. We prove that $\Cat(X,\xi)$ allows to establish a relation between the number of equilibrium states of dynamical systems and their global dynamical properties (such as existence of homoclinic cycles and the structure of the set of chain recurrent points). In the paper we give a cohomological lower bound for $\Cat(X,\xi)$, which uses cup-products of cohomology classes of flat line bundles with monodromy described by complex numbers, which are not Dirichlet units.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133