全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2002 

On generalisations of Calogero-Moser-Sutherland quantum problem and WDVV equations

DOI: 10.1063/1.1505651

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is proved that if the Schr\"odinger equation $L \psi = \lambda \psi$ of Calogero-Moser-Sutherland type with $$L = -\Delta + \sum\limits_{\alpha\in{\cal A}_{+}} \frac{m_{\alpha}(m_{\alpha}+1) (\alpha,\alpha)}{\sin^{2}(\alpha,x)}$$ has a solution of the product form $\psi_0 = \prod_{\alpha \in {\cal {A}_+}} \sin^{-m_{\alpha}}(\alpha,x),$ then the function $F(x) =\sum\limits_{\alpha \in \cal {A}_{+}} m_{\alpha} (\alpha,x)^2 {\rm log} (\alpha,x)^2$ satisfies the generalised WDVV equations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133