全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Tight distance-regular graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a distance-regular graph $\G$ with diameter $d \ge 3$ and eigenvalues $k=\theta_0>\theta_1>... >\theta_d$. We show the intersection numbers $a_1, b_1$ satisfy $$ (\theta_1 + {k \over a_1+1}) (\theta_d + {k \over a_1+1}) \ge - {ka_1b_1 \over (a_1+1)^2}. $$ We say $\G$ is {\it tight} whenever $\G$ is not bipartite, and equality holds above. We characterize the tight property in a number of ways. For example, we show $\G$ is tight if and only if the intersection numbers are given by certain rational expressions involving $d$ independent parameters. We show $\G$ is tight if and only if $a_1\not=0$, $a_d=0$, and $\G$ is 1-homogeneous in the sense of Nomura. We show $\G$ is tight if and only if each local graph is connected strongly-regular, with nontrivial eigenvalues $-1-b_1(1+\theta_1)^{-1}$ and $-1-b_1(1+\theta_d)^{-1}$. Three infinite families and nine sporadic examples of tight distance-regular graphs are given.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133