全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

On certain Cuntz-Pimsner algebras

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A$ be a separable unital C*-algebra and let $\pi : A \ra \Lc(\Hf)$ be a faithful representation of $A$ on a separable Hilbert space $\Hf$ such that $\pi(A) \cap \Kc(\Hf) = \{0 \}$. We show that $\Oc_E$, the Cuntz-Pimsner algebra associated to the Hilbert $A$-bimodule $E = \Hf \ot_{\C} A$, is simple and purely infinite. If $A$ is nuclear and belongs to the bootstrap class to which the UCT applies, then the same applies to $\Oc_E$. Hence by the Kirchberg-Phillips Theorem the isomorphism class of $\Oc_E$ only depends on the $K$-theory of $A$ and the class of the unit.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133