全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2001 

Narrow operators and the Daugavet property for ultraproducts

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that if $T$ is a narrow operator on $X=X_{1}\oplus_{1} X_{2}$ or $X=X_{1}\oplus_{\infty} X_{2}$, then the restrictions to $X_{1}$ and $X_{2}$ are narrow and conversely. We also characterise by a version of the Daugavet property for positive operators on Banach lattices which unconditional sums of Banach spaces inherit the Daugavet property, and we study the Daugavet property for ultraproducts.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133