全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1998 

Integration of the Lifting formulas and the cyclic homology of the algebras of differential operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

We integrate the Lifting cocycles $\Psi_{2n+1},\Psi_{2n+3},\Psi_{2n+5},...$ ([Sh1], [Sh2]) on the Lie algebra $\Dif_n$ of holomorphic differential operators on an $n$-dimensional complex vector space to the cocycles on the Lie algebra of holomorphic differential operators on a holomorphic line bundle $\lambda$ on an $n$-dimensional complex manifold $M$ in the sense of Gelfand-Fuks cohomology [GF] (more precisely, we integrate the cocycles on the sheaves of the Lie algebras of finite matrices over the corresponding associative algebras). The main result is the following explicit form of the Feigin-Tsygan theorem [FT1]: $H^\bullet_\Lie(\gl^\fin_\infty(\Dif_n);\C) = \wedge^\bullet(\Psi_{2n+1}, \Psi_{2n+3},\Psi_{2n+5}, ...)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133