全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1998 

On Complexity of the Word Problem in Braid Groups and Mapping Class Groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that the word problem in the mapping class group of the once-punctured surface of genus g has complexity O(|w|^2 g for |w| > log(g) where |w| is the length of the word in a (standard) set of generators. The corresponding bound in the case of the closed surface is O(|w|^2 g^2). We also carry out the same methods for the braid groups, and show that this gives a bound which improves the best known bound in this case; namely, the complexity of the word problem in the n-braid group is O(|w|^2 n), for |w| > log n. We state a similar result for mapping class groups of surfaces with several punctures.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133