全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1998 

Intrinsic Location Parameter of a Diffusion Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

For nonlinear functions f of a random vector Y, E[f(Y)] and f(E[Y]) usually differ. Consequently the mathematical expectation of Y is not intrinsic: when we change coordinate systems, it is not invariant.This article is about a fundamental and hitherto neglected property of random vectors of the form Y = f(X(t)), where X(t) is the value at time t of a diffusion process X: namely that there exists a measure of location, called the "intrinsic location parameter" (ILP), which coincides with mathematical expectation only in special cases, and which is invariant under change of coordinate systems. The construction uses martingales with respect to the intrinsic geometry of diffusion processes, and the heat flow of harmonic mappings. We compute formulas which could be useful to statisticians, engineers, and others who use diffusion process models; these have immediate application, discussed in a separate article, to the construction of an intrinsic nonlinear analog to the Kalman Filter. We present here a numerical simulation of a nonlinear SDE, showing how well the ILP formula tracks the mean of the SDE for a Euclidean geometry.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133