全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1997 

The enumerative geometry of rational and elliptic curves in projective space

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the geometry of varieties parametrizing degree d rational and elliptic curves in P^n intersecting fixed general linear spaces and tangent to a fixed hyperplane H with fixed multiplicities along fixed general linear subspaces of H. As an application, we derive recursive formulas for the number of such curves when the number is finite. These recursive formulas require as ``seed data'' only one input: there is one line in P^1 through two points. These numbers can be seen as top intersection products of various cycles on the Hilbert scheme of degree d rational or elliptic curves in P^n, or on certain components of $\mbar_0(P^n,d)$ or $\mbar_1(P^n,d)$, and as such give information about the Chow ring (and hence the topology) of these objects. The formula can also be interpreted as an equality in the Chow ring (not necessarily at the top level) of the appropriate Hilbert scheme or space of stable maps. In particular, this gives an algorithm for counting rational and elliptic curves in P^n intersecting various fixed general linear spaces. (The genus 0 numbers were found earlier by Kontsevich-Manin, and the genus 1 numbers were found for n=2 by Ran and Caporaso-Harris, and independently by Getzler for n=3.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133