全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1995 

Holomorphic Quantization on the Torus and Finite Quantum Mechanics

DOI: 10.1088/0305-4470/29/21/010

Full-Text   Cite this paper   Add to My Lib

Abstract:

We construct explicitly the quantization of classical linear maps of $SL(2, R)$ on toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the metaplectic representation. We show that Finite Quantum Mechanics (FQM) on tori of arbitrary integer discretization, is a consistent restriction of the holomorphic quantization of $SL(2, Z)$ to the subgroup $SL(2, Z)/\Gamma_l$, $\Gamma_l$ being the principal congruent subgroup mod l, on a finite dimensional Hilbert space. The generators of the ``rotation group'' mod l, $O_{l}(2)\subset SL(2,l)$, for arbitrary values of l are determined as well as their quantum mechanical eigenvalues and eigenstates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133