全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1995 

Gorenstein algebras, symmetric matrices, self-linked ideals, and symbolic powers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inspired by recent work in the theory of central projections onto hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert--Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetrizing a matrix that has, modulo a nonzerodivisor, a symmetric syzygy matrix. In addition, we establish a correspondence, roughly speaking, between Gorenstein perfect algebras of grade 1 that are birational onto their image, on the one hand, and self-linked perfect ideals of grade 2 that have one of the self-linking elements contained in the second symbolic power, on the other hand. Finally, we provide another characterization of these ideals in terms of their symbolic Rees algebras, and we prove a criterion for these algebras to be normal.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133