全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  1993 

Accessability of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that if A is the basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, if $A$ is completely invariant (i.e. $f^{-1}(A)=A$), and if $\mu$ is an arbitrary $f$-invariant measure with positive Lyapunov exponents on the boundary of $A$, then $\mu$-almost every point $q$ in the boundary of $A$ is accessible along a curve from $A$. In fact we prove the accessability of every "good" $q$ i.e. such $q$ for which "small neighbourhoods arrive at large scale" under iteration of $f$. This generalizes Douady-Eremenko-Levin-Petersen theorem on the accessability of periodic sources.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133