全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

2-Cycles on Higher Fano Hypersurfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F(X_d) be a smooth Fano variety of lines of a hypersurface X_d of degree d. In this paper, we prove the Griffiths group Griff_1(F(X_d)) is trivial if the hypersurface X_d is of 2-Fano type. As a result, we give a positive answer to a question of Professor Voisin about the first Griffiths groups of Fano varieties in some cases. Base on this result, we prove that CH_2(X_d)=\mathbb{Z} for a complex smooth $3$-Fano hypersurface X_d whose Fano variety of lines is smooth.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133