全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

On a motivic invariant of the arc-analytic equivalence

Full-Text   Cite this paper   Add to My Lib

Abstract:

To a Nash function germ, we associate a zeta function similar to the one introduced by J. Denef and F. Loeser. Our zeta function is a formal power series with coefficients in a Grothendieck ring $\mathcal{M}$ of $\mathcal{AS}$-sets up to $\mathbb{R}^*$-equivariant $\mathcal{AS}$-bijections over $\mathbb{R}^*$, an analog of the Grothendieck ring constructed by G. Guibert, F. Loeser and M. Merle. This zeta function generalizes the previous construction of G. Fichou but thanks to its extra structure it allows us to get a convolution formula and a Thom-Sebastiani type formula. We show that our zeta function is an invariant of the arc-analytic equivalence, a version of the blow-Nash equivalence of G. Fichou. The convolution formula allows us to obtain a partial classification of Brieskorn polynomials up to the arc-analytic equivalence by showing that the exponents are arc-analytic invariants.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133