全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

Uniqueness of representation--theoretic hyperbolic Kac--Moody groups over $\Z$

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a simply laced and hyperbolic Kac--Moody group $G=G(R)$ over a commutative ring $R$ with 1, we consider a map from a finite presentation of $G(R)$ obtained by Allcock and Carbone to a representation--theoretic construction $G^{\lambda}(R)$ corresponding to an integrable representation $V^{\lambda}$ with dominant integral weight $\lambda$. When $R=\Z$, we prove that this map extends to a group homomorphism $\rho_{\lambda,\Z}: G(\Z) \to G^{\lambda}(\Z).$ We prove that the kernel $K^{\lambda}$ of the map $\rho_{\lam,\Z}: G(\Z)\to G^{\lam}(\Z)$ lies in $H(\C)$ and if the group homomorphism $\varphi:G(\Z)\to G(\C)$ is injective, then $K^{\lambda}\leq H(\Z)\cong(\Z/2\Z)^{rank(G)}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133